A Symbolic Control Approach to the Programming of Cyber-Physical Systems

Antoine Girard

CNRS, Laboratoire des Signaux et Systèmes
Gif-sur-Yvette, France

Modélisation des Systèmes Réactifs
Angers, November, 13-15, 2019
Cyber-physical systems (CPS) consist of computational elements monitoring and controlling physical entities.

Design of CPS is challenging, time consuming and costly:

- Cyber/physical/human interactions
- Complex and multiple control objectives
- Critical safety requirements
Towards programmable CPS

Novel programming paradigm where the CPS (and not only its “cyber” component) is viewed as the execution platform:

- A **CPS program** describes the intended behavior of the CPS
 - Abstracts some characteristics of the cyber-physical execution platform
- A **CPS compiler** generates from a CPS program, control laws enforcing the specified behavior
 - Based on a model of the cyber-physical execution platform
 - Strong guarantees on the synthesized controller provided by the use of formal methods
- Rapid and dependable development/evolution of advanced functions of a CPS
Example - adaptive cruise control

Model

\[
\begin{align*}
d^+ &= d + \tau(v_1 - v_2) \\
v_1^+ &= f_1(v_1, u), u \in [u_{\text{min}}, u_{\text{max}}] \\
v_2^+ &= f_2(v_2, w), w \in [w_{\text{min}}, w_{\text{max}}]
\end{align*}
\]

Compiler
(controller synthesis)

Controller
(correct by design)

No Controller
(existing/found)

Program

\[
\begin{align*}
v_1^+ &\geq v_1 + \alpha \quad \text{if } v_1 \leq v^* - \beta \\
v_1^+ &\leq v_1 - \alpha \quad \text{if } v_1 \geq v^* + \beta
\end{align*}
\]

\[
\begin{align*}
d + l_2 < 0 \\
d + l_1 < 0 \\
d + l_2 \geq 0
\end{align*}
\]
Acknowledgments

Alina Eqtami
Elena Ivanova
Zohra Kader

Adnane Saoud
Vladimir Sinyakov
Outline of the talk

1. Formal controller synthesis from hybrid automata
 - A model matching problem
 - Symbolic control approach
 - Additional safety and reachability requirements

2. From hybrid automata to CPS programs
 - A proposal for a CPS programming language
 - Controller synthesis approaches to CPS compilation

3. Conclusions and perspectives
A transition system S is a tuple (X, U, Y, Δ, H), where

- X is a set of states
- U is a set of inputs
- Y is a set of outputs
- $\Delta : X \times U \rightrightarrows X$ is a set-valued transition map
- $H : X \rightarrow Y$ is an output map

The set of enabled inputs at state $x \in X$ is

$$\text{enab}_{\Delta}(x) = \{ u \in U | \Delta(x, u) \neq \emptyset \}$$

The set of non-blocking states is

$$\text{nbs}_{\Delta} = \{ x \in X | \text{enab}_{\Delta}(x) \neq \emptyset \}$$
A trajectory of S is a sequence $(x_k, u_k)_{k=0}^K$, where $K \in \mathbb{N} \cup \{+\infty\}$ and

- $x_k \in X$, $u_k \in U$, for $0 \leq k \leq K$
- $x_{k+1} \in \Delta(x_k, u_k)$, for $0 \leq k < K$

A trajectory is called:

- **maximal**, if either $K = +\infty$ or $\Delta(x_K, u_K) = \emptyset$
- **complete**, if $K = +\infty$

$(x_4, b), (x_3, a), (x_1, b)$ is maximal
$(x_4, b), (x_3, a), (x_1, a), (x_3, b), (x_4, b), (x_4, b) \ldots$ is complete
System and specification

System S_1:

\[
x_{k+1} \in F(x_k, u_k)
\]

$x_k \in X$, $u_k \in U$ where:
- $X \subseteq \mathbb{R}^{nx}$ is the set of states
- $U \subseteq \mathbb{R}^{nu}$ is the set of control inputs

Modeled by transition system

\[
S_1 = (X, U, X, F, id_X)
\]

Discrete time, continuous state.
System and specification

System S_1:

$$x_{k+1} \in F(x_k, u_k)$$

$x_k \in X$, $u_k \in U$ where:

- $X \subseteq \mathbb{R}^{n_x}$ is the set of states
- $U \subseteq \mathbb{R}^{n_u}$ is the set of control inputs

Modeled by transition system

$$S_1 = (X, U, X, F, id_X)$$

Discrete time, continuous state.

Specification S_2:

$$(x_{k+1}, p_{k+1}) \in G(x_k, p_k, v_k)$$

$x_k \in X$, $p_k \in P$, $v_k \in V$ where:

- P is a finite set of modes
- V is a finite set of external inputs

Modeled by transition system

$$S_2 = (X \times P, V, X, G, proj_X)$$

Discrete time, hybrid state.
Controller (θ, π) is a pair of set-valued maps:

\[
\theta : X \times P \times V \Rightarrow U \quad \pi : X \times P \times X \times V \Rightarrow P
\]

Closed-loop system:

\[
\begin{cases}
 x_{k+1} \in F(x_k, \theta(x_k, p_k, v_k)) \\
 p_{k+1} \in \pi(x_k, p_k, x_{k+1}, v_k)
\end{cases}
\]

Compatibility condition: for all $x \in X$, $p \in P$, $v \in V$,

\[
\theta(x, p, v) \subseteq \text{enab}_F(x) \quad \text{and} \quad \forall x' \in F(x, \theta(x, p, v)), \pi(x, p, x', v) \neq \emptyset
\]

Modeled by transition system

\[
S_{cl} = (X \times P, V, X, \Delta_{cl}, \text{proj}_X)
\]
Problem (Model matching)

Synthesize:
- controller \((\theta, \pi)\) compatible with \(S_1\)
- controllable set \(Z_c \subseteq X \times P, Z_c \neq \emptyset\)

s.t. for every \((x_0, p_0) \in Z_c\), every maximal trajectory \((x_k, p_k, v_k)_{k=0}^{K}\) of \(S_{cl}\) is also a maximal trajectory of \(S_2\).

Implication:
- every trajectory \((x_k, p_k, v_k)_{k=0}^{K}\) of \(S_{cl}\) is also a trajectory of \(S_2\)
Behavioral relationship between transition systems:

Definition (Tabuada 2008)

Let $S_a = (X_a, U_a, Y_a, \Delta_a, H_a)$, $S_b = (X_b, U_b, Y_b, \Delta_b, H_b)$ with $Y_a = Y_b$. $R \subseteq X_a \times X_b$ is an *alternating simulation relation* from S_a to S_b if:

1. for every $(x_a, x_b) \in R$, $H_a(x_a) = H_b(x_b)$
2. for every $(x_a, x_b) \in R$

 $$\forall u_a \in \text{enab}_{\Delta_a}(x_a), \exists u_b \in \text{enab}_{\Delta_b}(x_b), \forall x_b' \in \Delta_b(x_b, u_b), \exists x_a' \in \Delta_a(x_a, u_a), (x_a', x_b') \in R.$$

S_b *alternatingly simulates* S_a ($S_a \preceq_{AS} S_b$), if there exists an alternating simulation relation $R \neq \emptyset$ from S_a to S_b.
Theorem

The model matching problem has a solution if and only if $S_2 \succeq_{AS} S_1$.

Controllers given alternating simulation relation $R \subseteq (X \times P) \times X$:

\[
Z_c = \text{proj}_{(X \times P)}(R)
\]

\[
\theta(x, p, v) = \left\{ u \in \text{enab}_F(x) \mid \forall x' \in F(x, u), \exists p' \in P : (x', p') \in G(x, p, v) \cap Z_c \right\}
\]

\[
\pi(x, p, x', v) = \left\{ p' \in P \mid (x', p') \in G(x, p, v) \cap Z_c \right\}
\]

The model matching problem reduces to computing an alternating simulation relation from S_2 to S_1.
An approach based on symbolic control

Symbolic control is a computational approach to controller synthesis:

- based on symbolic (i.e. finite state) abstractions of systems and specifications
- mathematical correctness of synthesized controllers
- applies to nonlinear systems with input/state constraints and bounded uncertainties
- heavy offline/light online computations
Symbolic control workflow

1. Continuous/hybrid model & specs
2. Continuous to discrete abstraction
3. Symbolic model & specs
4. Discrete controller synthesis
5. Unrealizable specs
6. Continuous to discrete abstraction
7. Symbolic model & specs
8. Discrete controller synthesis
9. Unrealizable specs
10. Hybrid controller
11. Discrete to continuous refinement
12. Symbolic controller
13. Hybrid controller
Approach to model matching problem

Main steps:
1. compute a symbolic abstraction \(\hat{S}_1 \) of system \(S_1 \): \(\hat{S}_1 \preceq_{AS} S_1 \)
2. compute a symbolic abstraction \(\hat{S}_2 \) of specification \(S_2 \): \(S_2 \preceq_{AS} \hat{S}_2 \)
3. compute alternating simulation relation from \(\hat{S}_2 \) to \(\hat{S}_1 \)

If \(\hat{S}_2 \preceq_{AS} \hat{S}_1 \), transitivity of alternating simulation gives \(S_2 \preceq_{AS} S_1 \)

For abstraction, we use:
- a finite partition of \(X \): \((X_q)_{q \in Q} \) where \(Q \) is a finite set of symbols
- a finite subset of control inputs \(\hat{U} \subseteq U \)
Abstraction of the system

Transition system $\hat{S}_1 = (X, \hat{U}, X, \hat{F}, id_X)$ with:

$$x' \in \hat{F}(x, \hat{u}) \iff x \in X_q, \ x' \in X_{q'}, \ q' \in \Delta_1(q, \hat{u})$$

\[F(X_q, \hat{u}), \hat{F}(X_q, \hat{u}) \]

\[\Delta_1(q, \hat{u}) \]
Abstraction of the specification

Transition system \(\hat{S}_2 = (X \times P, V, X, \hat{G}, \text{proj}_X) \) with:

\[
(x', p') \in \hat{G}(x, p, v) \iff x \in X_q, \ x' \in X_{q'}, \ (q', p') \in \Delta_2(q, p, v)
\]

Rewrite \(G(x, p, v) = \bigcup_{p' \in P} G^v_{p, p'}(x) \times \{p'\} \)
Abstraction results

Proposition

For the proposed constructions:

1. $\hat{S}_1 \preceq_{AS} S_1$
2. if, on their domain, $G_{p,p'}^\nu$ are Lipschitz and have images with non-empty interior, then we can build a partition $(X_q)_{q \in Q}$ such that $S_2 \preceq_{AS} \hat{S}_2$
Alternating simulation relation

Given $\hat{Z} \subseteq Q \times P$, let the \textit{predecessor} set be given by

$$\text{Pre}(\hat{Z}) = \left\{ (q, p) \in Q \times P \mid \forall v \in \text{enab}_{\Delta_2}(q, p), \exists u \in \text{enab}_{\Delta_1}(q) : \forall q' \in \Delta_1(q, u), \exists p' \in P : (q', p') \in \Delta_2(q, p, v) \cap \hat{Z} \right\}$$

\textbf{Fixed point algorithm:}

$$\hat{Z}^0 = Q \times P, \quad \hat{Z}^{k+1} = \text{Pre}(\hat{Z}^k)$$

\textbf{Theorem}

The sequence $(\hat{Z}^k)_{k \in \mathbb{N}}$ reaches its fixed point $\hat{Z}^\infty = \bigcap_{k \in \mathbb{N}} \hat{Z}_k$ in finite number of iterations. The relation R given by

$$R = \left\{ ((x, p), x') \in (X \times P) \times X \mid x = x' \in X_q, \ (q, p) \in \hat{Z}^\infty \right\}$$

is an alternating simulation relation from \hat{S}_2 to \hat{S}_1 and also from S_2 to S_1.

A. Girard (CNRS, L2S) Symbolic control for CPS programming
Additional requirements

Limitations of the model matching problem formulation:

- No mechanism to avoid blocking states of the specification
 \[\implies \text{blocking states are winning states} \]
- No possibility to specify termination conditions
 \[\implies \text{tasks run forever unless a blocking state is reached} \]

We introduce a set of *terminal states* \(Z_f \subseteq X \times P \):

- The task terminates when \(Z_f \) is reached
- Two termination semantics:

 1. blocking states that are outside \(Z_f \) should be avoided
 \[\implies \text{Safety requirement} \]
 2. states in \(Z_f \) should be reached
 \[\implies \text{Reachability requirement} \]
Problem (Model matching problem with safety requirement)

Synthesize:

- controller \((\theta, \pi)\) compatible with \(S_1\)
- controllable set \(Z_c \subseteq X \times P, Z_c \neq \emptyset\)

s.t. for any \((x_0, p_0) \in Z_c\), any maximal trajectory \((x_k, p_k, v_k)_{k=0}^{K}\) of \(S_{cl}\):

1. \((x_k, p_k, v_k)_{k=0}^{K}\) is a trajectory of \(S_2\), \(K \in \mathbb{N}\) and \((x_K, p_K) \in Z_f\); or
2. \((x_k, p_k, v_k)_{k=0}^{K}\) is a maximal trajectory of \(S_2\), and either is complete, or \(\text{enab}_G(x_K, p_K) \neq \emptyset\)

Implication:

- every maximal trajectory \((x_k, p_k, v_k)_{k=0}^{K}\) of \(S_{cl}\), where for all \(0 \leq k \leq K\), such that \((x_k, p_k) \notin Z_f\), \(v_k \in \text{enab}_G(x_k, p_k)\) is a trajectory of \(S_2\) and either is complete or \((x_K, p_K) \in Z_f\).
Reachability requirement

Problem (Model matching problem with reachability requirement)

Synthesize:

- controller \((\theta, \pi)\) compatible with \(S_1\)
- controllable set \(Z_c \subseteq X \times P, Z_c \neq \emptyset\)

s.t. for any \((x_0, p_0) \in Z_c\), any maximal trajectory \((x_k, p_k, v_k)_{k=0}^{K} \) of \(S_{cl}\):

1. \((x_k, p_k, v_k)_{k=0}^{K} \) is a trajectory of \(S_2\), \(K \in \mathbb{N}\) and \((x_K, p_K) \in Z_f\); or
2. \((x_k, p_k, v_k)_{k=0}^{K} \) is a maximal trajectory of \(S_2\), \(K \in \mathbb{N}\) and \(\text{enab}_G(x_K, p_K) \neq \emptyset\)

Implication:

- every maximal trajectory \((x_k, p_k, v_k)^{K}_{k=0} \) of \(S_{cl}\), where for all \(0 \leq k \leq K\), such that \((x_k, p_k) \notin Z_f\), \(v_k \in \text{enab}_G(x_k, p_k)\) is a trajectory of \(S_2\) and satisfies \(K \in \mathbb{N}\) and \((x_K, p_K) \in Z_f\).
Controller synthesis

We use similar approaches based on symbolic abstractions \hat{S}_1 and \hat{S}_2. Consider the states of symbolic terminal states

$$\hat{Z}_f = \{(q, p) \in Q \times P | X_q \times \{p\} \subseteq Z_f\}.$$

Fixed point algorithms:

$$\hat{Z}_s^0 = \hat{Z}_f \cup \text{nbs}_{\Delta_2},$$
$$\hat{Z}_r^0 = \hat{Z}_f,$$

$$\hat{Z}_s^{k+1} = \hat{Z}_f \cup (\text{nbs}_{\Delta_2} \cap \text{Pre}(\hat{Z}_s^k))$$

$$\hat{Z}_r^{k+1} = \hat{Z}_f \cup (\text{nbs}_{\Delta_2} \cap \text{Pre}(\hat{Z}_r^k))$$

Theorem

The sequences $(\hat{Z}_s^k)_{k \in \mathbb{N}}$, $(\hat{Z}_r^k)_{k \in \mathbb{N}}$ reach their fixed points $\hat{Z}_s^\infty = \bigcap_{k \in \mathbb{N}} \hat{Z}_s^k$, $\hat{Z}_r^\infty = \bigcup_{k \in \mathbb{N}} \hat{Z}_r^k$ in finite number of iterations. Controllers solving the model matching problem with safety or reachability requirement can be constructed from these sets.
Example 1 - adaptive cruise control

System

\[
\begin{align*}
 d^+ &= d + \tau(v_1 - v_2) \\
 v_1^+ &= f_1(v_1, u), \quad u \in [u_{\min}, u_{\max}] \\
 v_2^+ &= f_2(v_2, w), \quad w \in [w_{\min}, w_{\max}]
\end{align*}
\]

Nonlinear dynamics
Input/state constraints
Bounded uncertainties

Specification

\[
\begin{align*}
 v_1^+ &\geq v_1 + \alpha \quad \text{if } v_1 \leq v^* - \beta \\
 v_1^+ &\leq v_1 - \alpha \quad \text{if } v_1 \geq v^* + \beta \\
 d + l_2 &< 0 \\
 d + l_1 &< 0 \\
\end{align*}
\]

Terminal set: \(Z_f = \emptyset \)
Termination semantics: safety

Symbolic control for CPS programming
Example 1 - adaptive cruise control
Example 2 - take-over maneuver

System

\[
\begin{align*}
 d^+ &= d + \tau \nu(v_1, v_2, |y - u_y|) \\
 v_1^+ &= f_1(v_1, u_v), u_v \in [u_{\min}, u_{\max}] \\
 v_2^+ &= f_2(v_2, w), w \in [w_{\min}, w_{\max}] \\
 y^+ &= u_y, u_y \in \{1, 2\}
\end{align*}
\]

Nonlinear dynamics
Input/state constraints
Bounded uncertainties

Specification

\[
\begin{align*}
 d < 0; d^+ < 0 & \quad \text{follow} \\
 d < 0, y = 2; d^+ \geq 0, y^+ = 2 & \quad \text{lead} \\
 d \geq 0; d^+ \geq 0
\end{align*}
\]

Terminal set: \(Z_f = \{\text{lead}\} \times \{d \geq 0, y = 1\} \)

Termination semantics: reachability
Example 2 - take-over maneuver
Outline of the talk

1. Formal controller synthesis from hybrid automata
 - A model matching problem
 - Symbolic control approach
 - Additional safety and reachability requirements

2. From hybrid automata to CPS programs
 - A proposal for a CPS programming language
 - Controller synthesis approaches to CPS compilation

3. Conclusions and perspectives
Consider a CPS modeled by transition system $S = (X, U, X, F, id_X)$.

A program for S consists of

- A collection of tasks T_1, \ldots, T_N each defined by
 - a transition system $S_i = (X \times P_i, V, X, G_i, \text{proj}_X)$
 - a set of terminal states $Z_{f,i} \subseteq X \times P_i$
 - a termination semantics “safety” or “reachability”

- A scheduler $\Sigma : Z_f \Rightarrow P$ where

\[
Z_f = Z_{f,1} \cup \cdots \cup Z_{f,N} \quad \text{and} \quad P = P_1 \cup \cdots \cup P_N
\]

- A set of terminal states $Z_{f,0} \subseteq Z_f$
Program executions

Executions of a CPS program:

- Execution of the current task specified by model matching problem with appropriate termination semantics
- Upon termination of the task:
 - If a terminal state of the program \((x, p) \in Z_f,0\) is reached then the program terminates
 - Otherwise, use the scheduler to select \(p' \in \Sigma(x, p)\) and execute new task starting in state \((x, p')\)

Programs and executions can also be defined inductively.
Controllers from CPS programs

- Synthesize a controller for each task, let $Z_{c,i}$ the associated controllable set.
- The controllers are *schedulable* if
 \[\forall (x, p) \in Z_f \setminus Z_{f,0}, \exists p' \in \Sigma(x, p) : (x, p') \in Z_c \]
 where $Z_c = Z_{c,1} \cup \cdots \cup Z_{c,N}$.
- If controllers are not schedulable, it is possible to use fixed point algorithms to refine terminal conditions of tasks and re-synthesize controllers, until schedulability.
Task 1: adaptive cruise control

- $Z_{f,1} = \{ d + 60 \geq 0, v_1 - v_2 \geq 5 \}$

Safety semantics

Task 2: take-over maneuver

- $Z_{f,2} = \{ d \geq 0, y = 1 \}$

Reachability semantics
Outline of the talk

1. Formal controller synthesis from hybrid automata
 - A model matching problem
 - Symbolic control approach
 - Additional safety and reachability requirements

2. From hybrid automata to CPS programs
 - A proposal for a CPS programming language
 - Controller synthesis approaches to CPS compilation

3. Conclusions and perspectives
Conclusion and perspectives

- A proposal for a language to program CPS
 - Intuitive description of elementary tasks using hybrid automata
 - Specification of complex behaviors by scheduling elementary tasks

- Feasibility of CPS program compilation
 - Automatic model based controller synthesis using formal methods
 - Proof of concept using symbolic control techniques

- Future work
 - Efficient synthesis of controllers
 - Robustness with respect to unmodeled references
 - Performance optimization of the synthesized controllers