A Tool for the Coverability Problems in Petri Nets

MSR 2019
Alain Finkel, Serge Haddad, Igor Khmelnitsky
Coverability Problems

Given a Petri net $(N, m/\text{zero.pnum})$, with $m/\text{zero.pnum} \in N^P$.

Coverability: Given a target marking $m_t \in N^P$, $\exists \sigma m/\text{zero.pnum} \sigma \rightarrow m' \geq m_t$.

Coverability set: Build $\text{Cover}(N, m/\text{zero.pnum}) \subseteq N^P_\omega$ such that:

$m \in N^P$ is coverable $\iff m_\omega \in \text{Cover}(N, m/\text{zero.pnum}), m \leq m_\omega$.
Coverability Problems

Given an Petri net \((\mathcal{N}, m_0)\), with \(m_0 \in \mathbb{N}^P\).
Coverability Problems

Given an Petri net \((\mathcal{N}, m_0)\), with \(m_0 \in \mathbb{N}^P\).

Coverability: Given a target marking \(m_t \in \mathbb{N}^P\)
Coverability Problems

Given an Petri net \((\mathcal{N}, m_0)\), with \(m_0 \in \mathbb{N}^P\).

Coverability: Given a target marking \(m_t \in \mathbb{N}^P\)

\[\exists \sigma \ m_0 \xrightarrow{\sigma} m' \geq m_t\]
Coverability Problems

Given an Petri net \((\mathcal{N}, m_0)\), with \(m_0 \in \mathbb{N}^P\).

Coverability: Given a target marking \(m_t \in \mathbb{N}^P\)

\[\exists \sigma m_0 \xrightarrow{\sigma} m' \geq m_t\]

Coverability set: Build \(Clover(\mathcal{N}, m_0) \subseteq \mathbb{N}_\omega^P\) such that:
Coverability Problems

Given an Petri net \((\mathcal{N}, m_0)\), with \(m_0 \in \mathbb{N}^P\).

Coverability: Given a target marking \(m_t \in \mathbb{N}^P\)

\[
\exists ?\sigma \quad m_0 \xrightarrow{\sigma} m' \geq m_t
\]

Coverability set: Build \(Clover(\mathcal{N}, m_0) \subseteq \mathbb{N}_\omega^P\) such that:

\[
m \in \mathbb{N}^P \text{ is coverable } \iff m_\omega \in Clover(\mathcal{N}, m_0), \ m \leq m_\omega
\]
Coverability set
Coverability set

Early works

• Karp-Miller (one.pnum/nine.pnum/six.pnum/nine.pnum)
• Finkel (AF) (one.pnum/nine.pnum/nine.pnum/three.pnum)

Looking for minimal space (two.pnum/zero.pnum/zero.pnum/five.pnum)

Recent works

• Geeraets et al. (GR) (two.pnum/zero.pnum/one.pnum/zero.pnum)
• Reynier et al. (MP) (two.pnum/zero.pnum/one.pnum/three.pnum)

Fixing Finkel

• Valmari et al. (VH) (two.pnum/zero.pnum/one.pnum/four.pnum/one.pnum/six.pnum)

Looking for minimal time (one.pnum). The Petri net mesh/two.pnumx/two.pnum from [two.pnum/six.pnum].
Coverability set

Early works

- Karp-Miller (1969)
Coverability set

Early works

• Karp-Miller (1969)
 Intractable
Coverability set

Early works

- Karp-Miller (1969)
 Intractable

- Finkel (AF) (1993)
Coverability set

Early works

- Karp-Miller (1969)
 Intractable

- Finkel (AF) (1993)
 Looking for minimal space
Coverability set

Early works

- Karp-Miller (1969)
 Intractable

- Finkel (AF) (1993)
 Looking for minimal space
 … but incomplete! (2005)
Coverability set

Early works

• Karp-Miller (1969)
 Intractable

• Finkel (AF) (1993)
 Looking for minimal space
 … but incomplete! (2005)

Recent works

• Geeraets et al. (GR)
 Alternative construction

• Reynier et al. (MP)
 Fixing Finkel
Coverability set

Early works

- Karp-Miller (1969)
 Intractable

- Finkel (AF) (1993)
 Looking for minimal space
 … but incomplete! (2005)

Recent works

- Geeraets et al. (GR) (2010)
 Alternative construction
Coverability set

Early works

- Karp-Miller (1969)
 Intractable

- Finkel (AF) (1993)
 Looking for minimal space
 … but incomplete! (2005)

Recent works

- Geeraets et al. (GR) (2010)
 Alternative construction

- Reynier et al. (MP) (2013)
 Fixing Finkel
Coverability set

Early works

- Karp-Miller (1969)
 Intractable

- Finkel (AF) (1993)
 Looking for minimal space
 … but incomplete! (2005)

Recent works

- Geeraets et al. (GR) (2010)
 Alternative construction

- Reynier et al. (MP) (2013)
 Fixing Finkel

- Valmari et al. (VH) (2014/16)
 Looking for minimal time
MinCov for Coverability Set
MinCov for Coverability Set

Algorithmic features

- A fix for Finkel’s algorithm based on accelerations
MinCov for Coverability Set

Algorithmic features

- A fix for Finkel’s algorithm based on accelerations
- A theoretical bound on the number of accelerations
MinCov for Coverability Set

Algorithmic features

- A fix for Finkel’s algorithm based on accelerations
- A theoretical bound on the number of accelerations

Implementation features

- Written in Python, ≈ 2000 lines.
- Can be found in https://github.com/IgorKhm/MinCov
Benchmarks

123 benchmarks (literature)

<table>
<thead>
<tr>
<th></th>
<th>T/O<sup>1</sup></th>
<th>Time</th>
<th>#Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinCov</td>
<td>16</td>
<td>18127</td>
<td>48218</td>
</tr>
<tr>
<td>VH</td>
<td>15</td>
<td>14873</td>
<td>75225</td>
</tr>
<tr>
<td>MP</td>
<td>24</td>
<td>23904</td>
<td>478681</td>
</tr>
<tr>
<td>GR</td>
<td>49</td>
<td>47089</td>
<td>N/A</td>
</tr>
<tr>
<td>AF</td>
<td>19</td>
<td>19223</td>
<td>45660</td>
</tr>
</tbody>
</table>

1. Timeout after 900 seconds.

100 benchmarks (random)

<table>
<thead>
<tr>
<th></th>
<th>T/O<sup>1</sup></th>
<th>Time</th>
<th>#Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinCov</td>
<td>14</td>
<td>13989</td>
<td>61164</td>
</tr>
<tr>
<td>VH</td>
<td>15</td>
<td>13692</td>
<td>208134</td>
</tr>
<tr>
<td>MP</td>
<td>21</td>
<td>21726</td>
<td>755129</td>
</tr>
<tr>
<td>GR</td>
<td>80</td>
<td>74767</td>
<td>N/A</td>
</tr>
<tr>
<td>AF</td>
<td>16</td>
<td>15888</td>
<td>63275</td>
</tr>
</tbody>
</table>
Coverability problem
Coverability problem

Blondin et al. (qCover) (2016)

Combining backward exploration with forward over-approximation
Coverability problem

Blondin et al. (qCover) (2016)
 Combining backward exploration with forward over-approximation

MinCov
 Partial forward construction of the coverability set
Coverability problem

Blondin et al. (qCover) (2016)

Combining backward exploration with forward over-approximation

MinCov

Partial forward construction of the coverability set

<table>
<thead>
<tr>
<th></th>
<th>Unsafe (60)</th>
<th>Safe (115)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>T/O</td>
<td>Time</td>
</tr>
<tr>
<td>MinCov</td>
<td>1754 1</td>
<td>51323 53</td>
<td>54</td>
</tr>
<tr>
<td>qCover</td>
<td>26467 26</td>
<td>11865 11</td>
<td>37</td>
</tr>
</tbody>
</table>
Coverability problem

Blondin et al. (qCover) (2016)

Combining backward exploration with forward over-approximation

MinCov

Partial forward construction of the coverability set

<table>
<thead>
<tr>
<th>unsafe (60)</th>
<th>safe (115)</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>time (T)</td>
<td>T/O</td>
<td>time (T)</td>
</tr>
<tr>
<td>MinCov</td>
<td>1754</td>
<td>1</td>
</tr>
<tr>
<td>qCover</td>
<td>26467</td>
<td>26</td>
</tr>
</tbody>
</table>

Complementary tools!
Coverability problem

Blondin et al. (qCover) (2016)

Combining backward exploration with forward over-approximation

MinCov

Partial forward construction of the coverability set

<table>
<thead>
<tr>
<th></th>
<th>Unsafe (60)</th>
<th>Safe (115)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>T/O</td>
<td>Time</td>
</tr>
<tr>
<td>MinCov</td>
<td>1754</td>
<td>1</td>
<td>51323</td>
</tr>
<tr>
<td>qCover</td>
<td>26467</td>
<td>26</td>
<td>11865</td>
</tr>
<tr>
<td>MinCov</td>
<td></td>
<td>qCover(^1)</td>
<td>1841</td>
</tr>
</tbody>
</table>

\(^1\) Time(MinCov || qCover) = 2 \min (\text{Time(MinCov)}, \text{Time(qCover)}).
Thank you!

See you at the tool demonstration!