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General context: Security Properties
Information flow:

Transmission of information from a high level user to a low level user,
in a possibly illegal and/or indirect way.

A class of Security Properties:

Avoid information flow to preserve secret data during communications.
[Mantel 2000, Focardi, Gorrieri 2001, Bryans, Koutny, Mazaré, Ryan 2008].

Goals:

Check whether a system satisfies such properties.
[BKMR 2008, D’Souza, Holla, Raghavendra, Sprick 2011, Best, Darondeau,
Gorrieri 2011, Best, Darondeau 2012, Cassez, Dubreil, Marchand 2012,
Dimitrova, Finkbeiner, Kovács, Rabe, Seidl 2012, Clarkson, Finkbeiner,
Koleini, Micinski, Rabe, Sanchez 2014]
Enforce those properties.
[Lafortune 12-19, with many co-authors], [Marchand 11-15, with many
co-authors], [Tong, Ma, Li, Seatzu, Giua 16].
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Partially Observable System

a

ε c

ε

c

d

visit to a red state is

hidden from observer

observing ad∗ discloses a visit

acd∗ is ambiguous

A:

Goals: hide or detect information

I Opacity: the visit is a secret which must be kept
[Bryans et al. 08]

I Diagnosis: the visit is a faulty event which must be detected
[Sampath et al. 95]
No black box: Observer knows the system
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Outline

Qualitative properties of Diagnosability and Opacity

Rational Information Flow Properties

Probabilistic Disclosure

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies
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A common framework
A system with set L of behaviours

I A subset M ⊆ L with M = L \M,

I An external agent observing the system via a function O on L.

Requirements: ordering ambiguity

O(M) ∩ O(M) = ∅

O(M) ∩ O(M) 6= ∅

O(M) ⊆ O(M) O(M) ⊆ O(M)

O(M) = O(M)

M diagnosable

M weakly opaque
or not diagnosable

M opaque | M opaque

M symmetrically opaque
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Illustration

M O−1(o)

O(M) ⊆ O(M) O(M) ∩ O(M) = ∅
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Verification

Model Diagnosability Opacity

finite LTS NL-c. PSPACE-c.
[Cassez et al. 09]

safe (WF-)PN PSPACE-c. ESPACE-c.

weak-fairness det. space 2O(n)

PN EXPSPACE-c. undecidable
+[Yin et al. 17] +[Bryans et al. 08]

strict WF-PN Reach ≤P ¬Diag ≤EXP Reach
no fair faults

[B., Haar, Schmitz, Schwoon 17]
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Weak Fairness

A WF-Petri net

is a PN N = (P,T ,w ,m0) with a subset W ⊆ T of weakly fair transitions.
Trace σ = t1t2 . . . ∈ Trω with markings m0m1 . . . is weakly fair if ∀t ∈W :

WF1 either there are infinitely many i with t = ti

WF2 or there are infinitely many i where ti conflicts with t in mi−1:
mi−1(p)− w(p, ti ) < w(p, t) for some place p.

For safe PNS, equivalent to:

For each i , if t is enabled in mi−1, there is a j ≥ i with •t ∩ •tj 6= ∅.
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WF Diagnosability and WF Opacity

WF Diagnosability = Finite Diagnosability restricted to WF traces

for any σ ∈ FtyωWF (A)
there is a prefix σ̂ s.t.
any ρ ∈ TrωWF (A)
with O(σ̂) < O(ρ)
is also faulty

σ̂ σ

ρ

WF traces

WF Opacity = Finite Opacity restricted to WF traces

for each σ ∈ Sec∗(A)
there is ρ ∈ PubωWF (A)
such that O(σ) ≤ O(ρ)

σ •s ∈ S

WF ρ
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Properties

W = ∅ corresponds to the standard notion

For a convergent WF PN (N ,W ):

I (N , ∅) is WF diagnosable iff N is diagnosable.

I Secret is WF opaque in (N , ∅) iff it is opaque in N .

WF Opacity is more discriminating than Opacity

Opaque because
O(Sec∗) = a∗

O(Sec∗) = a∗ + b∗

but not WF-opaque

s1u1u2

a!s2 WFb

For secret trace σ = s1a, any infinite WF trace ρ such that O(σ) < O(ρ)
belongs to s1a

ω + u1a
∗s2a

ω hence contains a secret transition.
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Properties
W = ∅ corresponds to the standard notion

For a convergent WF PN (N ,W ):

I (N , ∅) is WF diagnosable iff N is diagnosable.

I Secret is WF opaque in (N , ∅) iff it is opaque in N .

Weak fairness increases diagnosability

f u

!a WF !b WF

c
not Diag because
O(fcω) = O(ucω)
but Diag without c
and WF-diag

For WF faulty traces in fc∗acω, finite prefixes containing a have observations
in c∗ac∗, hence all infinite WF extensions are faulty.
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a!s2 WFb

For secret trace σ = s1a, any infinite WF trace ρ such that O(σ) < O(ρ)
belongs to s1a

ω + u1a
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ω hence contains a secret transition.
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Summary

Good news:

I Weak fairness for Diagnosability and Opacity comes at no additional
cost in safe Petri nets;

I Standard Diagnosability is EXPSPACE-complete for Petri nets.

Bad news:

I Other strong undecidability results for the verification of Opacity in
Petri nets;

I Non Diagnosability is equivalent to reachability when faults are not
weakly fair.

Open problem: the complexity of verifying WF Diagnosability
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Outline

Qualitative properties of Diagnosability and Opacity

Rational Information Flow Properties

Probabilistic Disclosure

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies



13/43

Examples

Given actions in A and set of traces L ⊆ A∗

I A = V ]C ]N a partition into visible, confidential and neutral actions.

Removal of confidential actions:
An observer cannot see if the confidential actions are erased: for any
w ∈ L, erasing all confidential actions in w results in a behaviour still in L.

Insertion of X -admissible confidential actions, with X ⊆ A:
for any w = w1w2 ∈ L such that w2 contains no confidential action and
there exists w3 ∈ A∗ and c ∈ C with w3c ∈ L and the X -letters in w1 and
w3 are the same, then w1cw2 also belongs to L.

I A = V ] P a partition into visible actions and participant actions.

Strong anonymity of participants:

for any w ∈ L, replacing in w an action a ∈ P by any other action in P
produces a behaviour still in L.
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Rational observers

I An automaton is a finite Labelled Transition System over a set of
labels Lab. With final states and Lab is alphabet A, it accepts a
regular language in A∗.

0 1 3

2

a b

b a

a a, b

b

L = a+b{a, b}∗ ∪ b+a{a, b}∗
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R = {(a, a), (b, b)}∗(ε, b)(a, a)∗
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Rational observers
A rational observer

is a rational relation O ⊆ A∗ × B∗.
Observation of w ∈ A∗: O(w) = {w ′ ∈ B∗ | (w ,w ′) ∈ O}.
Observation of L ⊆ A∗: O(L) = ∪w∈LO(w)

Example: an Orwellian observer

Over A = {a, b}: O(ε) = ε and O(w) =

{
π{b}(w) if w ends with a
π{a}(w) if w ends with b

Then O = Oa ] Ob ] Oε with:

Oa : p0 p1 Ob : q0 q1 Oε : r0
a|ε

a|ε, b|b
b|ε

a|a, b|ε

In L = (a+ b)(a∗+ b∗)(a+ b), the subset M = a(a∗+ b∗)(a+ b) is opaque.
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Rational Information Flow Properties

A rational information flow property (RIFP) for L

is any relation L1 ⊆ L2, where L1 and L2 are given by:

L1, L2 ::= L | O(L1) | L1 ∪ L2 | L1 ∩ L2

where O is a rational observer.

RIF (L) for a class of languages L
is the set of rational information flow properties for languages L ∈ L.
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Example 1: Removal of confidential actions

A = V ]C ]N a partition into visible, confidential and neutral actions.

An observer cannot see if the confidential actions are erased: for any be-
haviour w ∈ L, erasing all confidential actions in w results in a behaviour
still in L.

Translates as
πC (L) ⊆ L

where πC is the projection from A∗ onto (A \ C )∗:

πC (a) =

{
ε if a ∈ C
a otherwise

c |ε, c ∈ C
a|a, a ∈ V ] N

Proposition

Since πC is a rational observer, removal of confidential actions is an RIFP.
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Example 2: Insertion of confidential actions

A = V ] C ] N and X ⊆ A.

For any w = w1w2 ∈ L such that w2 contains no confidential event and there
exists w3 ∈ A∗ and c ∈ C with w3c ∈ L and the X -letters in w1 and w3 are
the same, then w1cw2 also belongs to L.

Translates as ⋃
c∈C

(l-insc(L) ∩ OX
c (L)) ⊆ L

where for each c ∈ C ,

I l-insc is the rational relation inserting c after the last confidential
action,

I OX
c is defined by OX

c (u) = π−1
X (πX (c−1u)).c .(V ] N)∗ for u ∈ A∗.

Proposition

All operations are rational observers, hence insertion of X -admissible
confidential actions is an RIFP.
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Example 3: Strong anonymity

A = V ] P .

For any w ∈ L, replacing in w an action in P by another produces a behaviour
in L.

Translates as OP
SA(L) ⊆ L

where OP
SA is a substitution:

v |v , v ∈ V
a|a′, (a, a′) ∈ P × P

OP
SA(a) =

{
P if a ∈ P
{a} otherwise

Proposition

A substitution is a rational observer, hence strong anonymity is an RIFP.
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Verification of RIFPs
For a class of languages L:

If L is closed under union, intersection, and rational transductions, and if the
inclusion is decidable in L, then any property in RIF (L) is decidable.

For the class Reg of regular languages:

The problem of deciding a property in RIF (Reg) is PSPACE-complete.

Because regular languages have all the required closure properties and inclu-
sion is decidable in PSPACE in Reg .
PSAPCE-hardness comes from the fact that OK (w) = {w}∩K is a rational
relation if and only if K is a regular language.

Consequence:

Strong (and weak) anonymity [BKMR 2008], as well as all Basic Security
Predicates [Mantel 2000], are decidable (in PSPACE) for regular languages.
We retrieve results from [D’Souza et al., 2011].
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The case of Opacity
For M ⊆ L a regular subset of secret behaviours
and O a functional rational observer

From O(M) ⊆ O(M):

Rational opacity for regular secrets is an RIFP.

Consequence:

We recover the decidability result (in PSPACE) for rational opacity with
regular languages and regular secrets [Cassez et al., 2009].

Remark: Strong Anonymity translates as Opacity [BKMR08]

I O is the morphism into (Σ ∪ {]})∗ defined by:
O(a) = ] if a ∈ P and O(a) = a otherwise

I πP the projection on P∗

L is strongly anonymous w.r.t. P iff for any u ∈ P∗,

Secu = {w ∈ L | πP(w) 6= u ∧ |πP(w)| = |u|}
is opaque for O.
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The case of Weak Non Inference

From [D’Souza et al., 2011]

With A = V ] C ] N,

WNI

L satisfies WNI if for all w ∈ L there exists w ′ ∈ L such that if w contains
confidential actions, then πV (w) = πV (w ′) and πC (w) 6= πC (w ′).

WNI is undecidable on regular languages.

Consequence:

WNI is NOT an RIFP.
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Summary

Good news:

I Many security properties from the literature are RIFPs;

I The complexity of verification is always in PSPACE for regular
languages, whatever the (rational) observation.

To do:

I Find other classes satisfying the closure properties leading to
decidability;

I Find links with model checking extensions of LTL like SecLTL
[DFKRS12] or even CTL∗ like HyperCTL∗ [CFKMRS14].

I What about Opacity with a general rational observer ?



24/43

Outline

Qualitative properties of Diagnosability and Opacity

Rational Information Flow Properties

Probabilistic Disclosure

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies
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A quantitative problem for opacity...

Sec O−1(o)
Classes leaking
their inclusion
into Sec

No disclosing path iff
V = Sec \ O−1(O(Sec)) is empty Measuring the disclosure set V
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...under uncertainty

System

Attacker

I Probabilistic choice: Markov Chains
[B., Mullins, Sassolas 10,15] [Saboori, Hadjicostis 14]

I Combined with nondeterministic choice:
[B., Chatterjee, Sznajder 15] for MDPs and POMDPs,
[B., Haddad, Lefaucheux 17] for MDPs,

I Underspecification: [B., Kouchnarenko, Mullins, Sassolas 16] for IMCs.
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...under uncertainty

System

Resolution
by strategies

Attacker

I Probabilistic choice: Markov Chains
[B., Mullins, Sassolas 10,15] [Saboori, Hadjicostis 14]

I Combined with nondeterministic choice:
[B., Chatterjee, Sznajder 15] for MDPs and POMDPs,
[B., Haddad, Lefaucheux 17] for MDPs,

I Underspecification: [B., Kouchnarenko, Mullins, Sassolas 16] for IMCs.
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A toy example

Access control to a database inspired from [Biondi et al. 13]

a q0

M2 :

ε
q1

c

q3

d
q2

e
q4

[0.2, 1]

[0.2, 1]
1

[0, 1]

[0, 1]

[0, 1]

1

1

a r0

M1 :

ε

r ′1

ε

r1
c

r3

d
r2

e
r4

[0.2, 0.4]

[0.2, 1] 1

[0.1, 1]

[0.1, 1]

[0.1, 1]

[0.1, 1]

1

1

0: input user name, 1: input password, 3: access granted if correct
2: not on the list of authorized users, 4: reject
Sec = {0.1.3ω}; All states except 1 and 1′ are observable.
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Observable Markov chains

Example with Sec : visiting s1 or s2, hidden by O

a

s0

ε

s2

cs3

ε

s1

cs4

d s5

1
3 4

9

2
9

1

1

1

1

1

A:

A Markov Chain A = (S ,∆,O) over Σ:

I countable set S of states,

I ∆ : S → Dist(S),

I O : S → Σ ∪ {ε} observation function.

equipped with an initial distribution µ0.
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Disclosure for MCs

ω-Disclosure of Sec in (A, µ0):

Discω(A, µ0,Sec) = PA,µ0(V ) for V = Sec \ O−1(O(Sec)).

Example with Sec : presence of s1 or s2, hidden by O

a

s0

ε

s2

cs3

ε

s1

cs4

d s5

1
3 4

9

2
9

1

1

1

1

1

A:

Path(A) O Sec? V ? PA
s0s2s

ω
5 adω 3 3 1/3

s0s3s
ω
5 acdω 7 7 4/9

s0s1s4s
ω
5 acdω 3 7 2/9

Discω(A, 1s0 ,Sec) = 1
3
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Finite disclosure

Restricting Sec to the set of pathes visiting states from a given subset

assuming a path remains secret once a secret state has been visited.

Observation sequence w in Σ∗ is:
disclosing if all pathes in O−1(w) are secret,
minimal disclosing if disclosing with no strict disclosing prefix.

Disc(A, µ0,Sec): probability of minimal disclosing observations

a
s0

a

s∗

b

s11

a

s21

b

s22
...

1 1

1

1
2

1
4

1
8

1

Discω = 1
2

Disc = 0

Disc ≤ Discω
equality if A is convergent and finitely branching.
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Interactions with the system

Active attacker

The attacker consists of two components:

I The passive external observer,

I Some piece of code inside the system.

Worst case corresponds to maximal disclosure.

System designer

The designer has provided a first version with the required functionalities.
He must develop the access policy...

... to obtain minimal disclosure.
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Constraint Markov Chains

Idle
s0

Error
s2

Recover
s4

Success
s1

Failure

s3

x1

x2

x3

1

y2

y1

y3

1

1

M1 = (S ,T1,O) :

T1(s0) subset of:
0 ≤ x1, x2, x3 ≤ 1
x1 + x2 + x3 = 1

T1(s4) subset of:
0 ≤ y1, y2, y3 ≤ 1
y1 + y2 + y3 = 1

A CMC over Σ: [Jonsson, Larsen 1991] [Caillaud et al., 2011]

M = (S ,T ,O) is like an OMC with

I finite set of states S ,

I T : S → 2Dist(S).
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Subclasses of CMCs

MDP: Markov Decision Processes

For each s ∈ S , T (s) is a finite set.

LCMC: Linear CMCs

For each s ∈ S , T (s) is the set of distributions that are solutions of a linear
system.

IMC: Interval MC

For each s, T (s) is described by a family of intervals (I (s, s ′))s′∈S .

Relations
I IMC is a strict subclass of LCMC,

I Any LCMC can be transformed in an exponentially larger MDP.
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Examples

LCMC M2:

Idle
s0

Error
s2

. . .

Success
s1

Failure
s3

x1

x2

x3

x2 ≥ 2x3

x2 + x3 ≤ 1
2

µ1 = (1, 0, 0)
µ2 = ( 1

2 ,
1
2 , 0)

µ3 = ( 1
2 ,

1
3 ,

1
6 )

0 ≤ x1, x2, x3 ≤ 1
x1 + x2 + x3 = 1

IMC M3:

Idle
s0

Error
s2

. . .

Success
s1

Failure
s3

[ 1
2 , 1]

[0, 1
2 ]

[0, 1
6 ]

1
2
≤ x1 ≤ 1

0 ≤ x2 ≤ 1
2

0 ≤ x3 ≤ 1
6

µ4 = ( 5
6 , 0,

1
6 ) ∈ T3(s0)

µ4 /∈ T2(s0)



35/43

From LCMCs to MDPs

•

•

•

µ1

µ2

µ3

x1

x2

x3

1
2

1

1
2

1
6

µ1 = (1, 0, 0)

µ2 = ( 1
2 ,

1
2 , 0)

µ3 = ( 1
2 ,

1
3 ,

1
6 )

Idle
q0

Error q2

Success q1

Failure q3

x1

x2

x3

Idle
q0

Error q2

Success q1

Failure q3

µ1, 1

µ2,
1
2
µ3,

1
2

µ2,
1
2

µ3,
1
3

µ3,
1
6
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Strategies on CMCs

a
r

b
s

]0, 1[

]0, 1[

1

A strategy for M = (S ,T ,O) with initial distribution µ0:

σ : FRuns(M)→ Dist(S)

For ρ = s0
µ1−→ s1 . . .

µn−→ sn, σ(ρ) ∈ T (sn).

Scheduling M with σ produces a (possibly infinite) MC Mσ.
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a
r

b
s

]0, 1[

]0, 1[

1

a
r

a
rr

b
rs

1− p1

p1

1

a
rrr

b
rrs

· · ·

1− p2

p2

1

A strategy for M = (S ,T ,O) with initial distribution µ0:

σ : FRuns(M)→ Dist(S)

For ρ = s0
µ1−→ s1 . . .

µn−→ sn, σ(ρ) ∈ T (sn).

Scheduling M with σ produces a (possibly infinite) MC Mσ.
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Randomized strategies on MDPs

An MDP with distributions µ1 and µ2 for s0 and secret states {s2, s3}
Disc = 1

2 with the two strategies choosing µ1 or µ2 in s0

if they are known by the observer.

c

s0

a

s1

b

s2

a

s3

b

s4

µ1,
1
2

µ1,
1
2

µ2,
1
2

µ2,
1
2 µ1, 1

µ1, 1µ2, 1

µ2, 1

But Disc = 0 with randomized strategies σp such that
σp(s0) = pµ1 + (1− p)µ2 with 0 < p < 1. Necessary for minimisation.

A randomized strategy associates σ(ρ) ∈ Dist(T (sn))

with ρ = s0
µ1−→ s1 . . .

µn−→ sn (instead of σ(ρ) in T (sn)).
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Maximal and minimal disclosure

For Sec in M with initial distribution µ0:

I Discmax(M, µ0,Sec) = supσ∈Strat(M)Disc(Mσ, µ0, Sec)

I Discmin(M, µ0, Sec) = infσ∈Strat(M)Disc(Mσ, µ0,Sec)

Several disclosure problems for a given M

I Value problem: compute the disclosure Discmax or Discmin.

I Quantitative decision problems: Given a threshold θ ∈ [0, 1],
is Discmax ≥ θ ? is Discmin ≤ θ ?

I Qualitative decision problems:
Limit-sure disclosure: the quantitative problem
with θ = 1 for maximisation and θ = 0 for minimisation.
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Maximal Disclosure

[BCS15] On MDPs, if observer ignores the strategies

or if no edge can be blocked by a strategy,

I The value can be computed in polynomial time;

I All problems are decidable.

[BHL17] On MDPs, if observer knows the strategies:

I Deterministic strategies are sufficient;

I The problem asking whether there exists a strategy producing value 1
is EXPTIME-complete;

I But the quantitative and limit-sure problems are undecidable.

Consequence:

The quantitative problem is undecidable for general LCMCs.
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Minimal Disclosure

[BHL17] On MDPs, if observer knows the strategies:

I Families of randomized strategies are necessary;

I The value can be computed in EXPTIME;

I All problems are decidable.
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Summary

Linear CMCs form a good class for compact specifications of
probabilistic systems with:

I nice closure properties;

I an increased security criterion with schedulers as adversaries;

I But the quantitative problem is undecidable unless the structure is
fixed.

Minimisation on MDPs

I requires randomized strategies;

I and all quantitative problems are decidable.
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Conclusion

A lot of work to be done... on qualitative and quantitative aspects

Thank you
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